![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEirdqZkoCFjDEZLV0BwLmQpFncgQflC6DfwMvJJZpR2WajRK0MVYDqP_B4Ca6BvX06clcJpq8N6bXtCODde7rlYzqsVXLCBLwswYfVdBHlRtEtE8bTBMrcVs2jLaB9Szb2RlonJB4C-BMI3/s320/220px-Brayton_cycle.svg.png)
A gas turbine, also called a combustion turbine, is a rotary engine that extracts energy from a flow of combustion gas. It has an upstream compressor coupled to a downstream turbine, and a combustion chamber in-between. (Gas turbine may also refer to just the turbine element.)
Energy is added to the gas stream in the combustor, where fuel is mixed with air and ignited. In the high pressure environment of the cumbustor; combustion of the fuel increases the temperature and therefore the pressure of the fluid in the fixed volume space. The products of the combustion (which are created as a result of the chemical reactions) are also created within the fixed volume and increase the pressure and interal energy of the gas even more. As these pressures are however less that the pressure leaving the compressor section of the engine, the combustion product mass is forced into the turbine section. There, the high velocity and volume of the gas flow is directed through a nozzle over the turbine's blades, spinning the turbine which powers the compressor and, for some turbines, drives their mechanical output. The energy given up to the turbine also reduces the temperature and pressure of the exhaust gas.
Energy is extracted in the form of shaft power, compressed air and thrust, in any combination, and used to power aircraft, trains, ships, generators, and even tanks.
Theory of operation
Gas turbines are described thermodynamically by the Brayton cycle, in which air is compressed isentropically, combustion occurs at constant pressure, and expansion over the turbine occurs isentropically back to the starting pressure.
In practice, friction and turbulence cause:
non-isentropic compression: for a given overall pressure ratio, the compressor delivery temperature is higher than ideal.
non-isentropic expansion: although the turbine temperature drop necessary to drive the compressor is unaffected, the associated pressure ratio is greater, which decreases the expansion available to provide useful work.
pressure losses in the air intake, combustor and exhaust: reduces the expansion available to provide useful work.
Brayton cycle
As with all cyclic heat engines, higher combustion temperature means greater efficiency. The limiting factor is the ability of the steel, nickel, ceramic, or other materials that make up the engine to withstand heat and pressure. Considerable engineering goes into keeping the turbine parts cool. Most turbines also try to recover exhaust heat, which otherwise is wasted energy. Recuperators are heat exchangers that pass exhaust heat to the compressed air, prior to combustion. Combined cycle designs pass waste heat to steam turbine systems. And combined heat and power (co-generation) uses waste heat for hot water production.
Mechanically, gas turbines can be considerably less complex than internal combustion piston engines. Simple turbines might have one moving part: the shaft/compressor/turbine/alternative-rotor assembly (see image above), not counting the fuel system. However, the required precision manufacturing for components and temperature resistant alloys necessary for high efficiency often make the construction of a simple turbine more complicated than piston engines.
More sophisticated turbines (such as those found in modern jet engines) may have multiple shafts (spools), hundreds of turbine blades, movable stator blades, and a vast system of complex piping, combustors and heat exchangers.
As a general rule, the smaller the engine the higher the rotation rate of the shaft(s) needs to be to maintain top speed. Turbine blade top speed determines the maximum pressure that can be gained,this produces the maximum power possible independent of the size of the engine. Jet engines operate around 10,000 rpm and micro turbines around 100,000 rpm.
Thrust bearings and journal bearings are a critical part of design. Traditionally, they have been hydrodynamic oil bearings, or oil-cooled ball bearings. These bearings are being surpassed by foil bearings, which have been successfully used in micro turbines and auxiliary power units.
Types of gas turbines
Aeroderivatives and jet engines
Diagram of a gas turbine jet engine
Airbreathing jet engines are gas turbines optimized to produce thrust from the exhaust gases, or from ducted fans connected to the gas turbines. Jet engines that produce thrust primarily from the direct impulse of exhaust gases are often called turbojets, whereas those that generate most of their thrust from the action of a ducted fan are often called turbofans or (rarely) fan-jets.
Gas turbines are also used in many liquid propellant rockets, the gas turbines are used to power a turbopump to permit the use of lightweight, low pressure tanks, which saves considerable dry mass.
Aeroderivatives are also used in electrical power generation due to their ability to startup, shut down, and handle load changes more quickly than industrial machines. They are also used in the marine industry to reduce weight. The GE LM2500 and LM6000 are two common models of this type of machine.
Amateur gas turbines
Increasing numbers of gas turbines are being used or even constructed by amateurs.
In its most straightforward form, these are commercial turbines acquired through military surplus or scrapyard sales, then operated for display as part of the hobby of engine collecting.[2][3] In its most extreme form, amateurs have even rebuilt engines beyond professional repair and then used them to compete for the Land Speed Record.
The simplest form of self-constructed gas turbine employs an automotive turbocharger as the core component. A combustion chamber is fabricated and plumbed between the compressor and turbine sections.[4]
More sophisticated turbojets are also built, where their thrust and light weight are sufficient to power large model aircraft.[5] The Schreckling design[5] constructs the entire engine from raw materials, including the fabrication of a centrifugal compressor wheel from plywood, epoxy and wrapped carbon fibre strands.
Like many technology based hobbies, they tend to give rise to manufacturing businesses over time. Several small companies now manufacture small turbines and parts for the amateur. Most turbojet-powered model aircraft are now using these commercial and semi-commercial microturbines, rather than a Schreckling-like home-build.[6]
Tidak ada komentar:
Posting Komentar